
ECE444: Software Engineering

Design Patterns 3

Shurui Zhou



OO Design Principles

Building stable 
and flexible 
systems



• the GoF book
• Elements of Reusable Object-Oriented 

Software
• 23 OO patterns



Lots of books on patterns



Design Patterns

• Design Patterns – expert solutions to recurring problems in a certain 
domain
• Description usually involves problem definition, driving forces, 

solution, benefits, difficulties, related patterns.
• Pattern Language - a collection of patterns, guiding the users through 

the decision process in building a system
• Patterns are related (high level-low level)



What does the pattern consist of?

• Intent of the pattern briefly describes both the problem and the 
solution.
• Motivation further explains the problem and the solution the pattern 

makes possible.
• Structure of classes shows each part of the pattern and how they are 

related.
• Code example in one of the popular programming languages makes it 

easier to grasp the idea behind the pattern.



• Creational patterns provide object creation mechanisms that 

increase flexibility and reuse of existing code.

• Structural patterns explain how to assemble objects and classes into 

larger structures, while keeping the structures flexible and efficient.

• Behavioral patterns take care of effective communication and the 

assignment of responsibilities between objects.

Classification of patterns



• Creational patterns

• Singleton

• Factory Method

• Structural patterns

• Composite

• Behavioral patterns

• Strategy

Classification of patterns



Singleton



Singleton
• Intent:
• Ensure that a class has just a single instance
• Provide a global access point to that instance

Clients may not even realize that 
they’re working with the same 
object all the time.



Singleton
• a creational design pattern that lets you ensure that a 

class has only one instance, while providing a global 
access point to this instance.
• Example:
• cache
• thread pools
• registries



Singleton

• How? 
• Make the default constructor private, to prevent other objects from using 

the new operator with the Singleton class.
• Create a static creation method that acts as a constructor. Under the hood, 

this method calls the private constructor to create an object and saves it in a 
static field. All following calls to this method return the cached object.



Singleton 

• The Singleton class declares the static 
method getInstance that returns the 
same instance of its own class.
• The Singleton’s constructor should be 

hidden from the client code. Calling 
the getInstance method should be the 
only way of getting the Singleton 
object.



Singleton Implementation (Python)



Singleton - Example

• java.lang.Runtime
Every Java application has a single instance of class Runtime that allows 
the application to interface with the environment in which the 
application is running. The current runtime can be obtained from the 
getRuntime method.
• java.awt.Desktop#getDesktop()
• java.lang.System#getSecurityManager()

http://java.sun.com/javase/6/docs/api/java/lang/Runtime.html
http://docs.oracle.com/javase/8/docs/api/java/awt/Desktop.html
http://docs.oracle.com/javase/8/docs/api/java/lang/System.html


Singleton - Applicability

• Use the Singleton pattern when a class in your program 
should have just a single instance available to all clients; for 
example, a single database object shared by different parts 
of the program.
• Use the Singleton pattern when you need stricter control 

over global variables.



Singleton: Pros and Cons



• Creational patterns

• Singleton

• Factory Method

• Structural patterns

• Composite

• Behavioral patterns

• Strategy

Classification of patterns



Factory Method



Factory Method

• Factory Method is a creational design pattern that provides an 
interface for creating objects in a superclass, but allows subclasses to 
alter the type of objects that will be created.



Factory Method

Creator Products



Factory Method The Product declares 
the interface

Concrete Products are 
different implementations of 
the product interface.

The Creator class declares the 
factory method that returns new 
product objects. It’s important 
that the return type of this 
method matches the product 
interface.

Concrete Creators override the base factory method 
so it returns a different type of product.
Note that the factory method doesn’t have 
to create new instances all the time. It can also 
return existing objects from a cache, an object pool, 
or another source.



Factory Method - Example



Factory Method - Applicability

• when you don’t know beforehand the exact types and dependencies 
of the objects your code should work with.
• when you want to provide users of your library or framework with a 

way to extend its internal components.
• when you want to save system resources by reusing existing objects 

instead of rebuilding them each time.



Factory Method – Pros and Cons



Abstract Factory
• Many designs start by using Factory Method (less complicated and 

more customizable via subclasses) and evolve toward Abstract Factory
(more flexible, but more complicated).

https://refactoring.guru/design-patterns/factory-method
https://refactoring.guru/design-patterns/abstract-factory


Abstract Factory
• Many designs start by using Factory Method (less complicated and 

more customizable via subclasses) and evolve toward Abstract Factory
(more flexible, but more complicated).

https://refactoring.guru/design-patterns/factory-method
https://refactoring.guru/design-patterns/abstract-factory


• Creational patterns

• Singleton

• Factory Method

• Structural patterns

• Composite

• Behavioral patterns

• Strategy

Classification of patterns



Composite Pattern



Composite Pattern

• Intent
Composite is a structural design pattern that lets you compose objects 
into tree structures and then work with these structures as if they were 
individual objects.
• Problem
Using the Composite pattern makes sense only when the core model of 
your app can be represented as a tree.



Composite Pattern

• 2 types of Objects
• Products
• Boxes



Composite Pattern
• Solution
Work with Products and Boxes through a common interface which 
declares a method for calculating the total price. (Recursively)



Composite Example

• Book



Composite Design Pattern - Structure
The Component interface 
describes operations that are 
common to both simple and 
complex elements of the 
tree.

The Leaf is a basic element 
of a tree that doesn’t have 
sub-elements.

The Composite/container is an 
element that has sub-elements: 
leaves or other containers. A 
container doesn’t know the concrete 
classes of its children. It works with all 
sub-elements only via the component 
interface

Client works with all elements through the component 
interface. As a result, the client can work in the same way 
with both simple or complex elements of the tree.



Implementation

1. Make sure that the core model of your app can be represented as a tree structure. Try 
to break it down into simple elements and containers. Remember that containers 
must be able to contain both simple elements and other containers.

2. Declare the component interface with a list of methods that make sense for both 
simple and complex components.

3. Create a leaf class to represent simple elements. A program may have multiple 
different leaf classes.

4. Create a container class to represent complex elements. In this class, provide an array 
field for storing references to sub-elements. The array must be able to store both 
leaves and containers, so make sure it’s declared with the component interface type.

5. While implementing the methods of the component interface, remember that a 
container is supposed to be delegating most of the work to sub-elements.

6. Finally, define the methods for adding and removal of child elements in the container.



Usage of the pattern in Python

• Usage examples: The Composite pattern is pretty common in Python 
code. It’s often used to represent hierarchies of user interface 
components or the code that works with graphs.
• Identification: If you have an object tree, and each object of a tree is 

a part of the same class hierarchy, this is most likely a composite. If 
methods of these classes delegate the work to child objects of the 
tree and do it via the base class/interface of the hierarchy, this is 
definitely a composite.



Real work application - Eclipse workspace, SWT
• IWorkspace is the root interface and it is a Composite of IContainers

and IFiles. 



Composite Pattern vs SOLID
• Which classes declare add and remove 

children operation?
• Trade-off between safety and transparency
• Component: transparency, because you can treat 

all components uniformly. It costs you safety, 
however, because clients may try to do 
meaningless things like add and remove objects 
from leaves.
• Composite: safety, because any attempt to add 

or remove objects from leaves will be caught at 
compile-time in a statically typed language. But 
you lose transparency, because leaves and 
composites have different interfaces.



Composite – Pros & Cons


