ECE444: Software Engineering

Design Patterns 3

Shurui Zhou

«;é* The Edward S. Rogers Sr. Department
@ | of Electrical & Computer Engineering

BS) B8y

%2 UNIVERSITY OF TORONTO

AAAAA

OO Design Principles

» Single responsibility Building stable
principle

and flexible
Open/closed principle Systems

\ Liskov substitution principle

Interface segregation
principle

Dependency inversion
principle

"iﬁré The Edward S. Rogers Sr. Deparrment
‘ of Electrical & Computer Engineering

) UNIVERSITY OF TORONTO

Copyrighted Material

Design Patterns

Elements of Reusable
Object-Oriented Software

Erich Gamma
Richard Helm
Ralph Johnson
John Vlissides

<
<

* the GoF book

* Elements of Reusable Object-Oriented
Software

* 23 OO0 patterns

DONILNWOD TYNOISSIHO¥d AFTSIM-NOSIAAY

w
m
e
w

"iﬁré The Edward S. Rogers Sr. Deparrment
& | lectrical & Computer Engineering

5‘% UNIVERSITY OF TORONTO

Lots of books on patterns

A
vy

PATTERNS
FOR PARALLEL
PROGRAMMING

2

Your Brain on Design Patterns

Head First
Design Patterns

Concurrent

Programming in Java"

Second Edition

Design Principles and Patterns

& Sun

DESIGN

PATTERNS

IN RUBY

Obie Fernandez

Josign Patterns lor

Decomposition, Coordinatios
on Multicore Architectiures

PATTERNS O
ENTERPRISE

APPLICATION
ARCHITECTURE

Copyrighted Material

A Pattern Language

Towns -Buildings - Construction

v
@
o
-
(&
]
—
Q.
oJ
v
=
-
@
-
—
©
Q.

Christopher Alexander

Sara Ishikawa - Murray Silverstein
WITH

Max Jacobson -Ingrid Fiksdahl-King
Shlomo Angel

Dating Design
Patterns

Flements of Reusable
Objective-Oriented Paired Programming

Ericha Gordon
Rickie Hanson
Rhonda Jackson
Jonna Disviisses

With special Bssistance lrom
Sweve “Half Bao Boy Plus Protocor” Swilvelis

Design Patterns

* Design Patterns — expert solutions to recurring problems in a certain
domain

* Description usually involves problem definition, driving forces,
solution, benefits, difficulties, related patterns.

* Pattern Language - a collection of patterns, guiding the users through
the decision process in building a system

 Patterns are related (high level-low level)

g8 The Edward S. Rogers Sr. D}

;;: ‘ ectrical & Cor 1, r Engin

w $ UNIVERSITY OF TORONTO

What does the pattern consist of?

* Intent of the pattern briefly describes both the problem and the
solution.

* Motivation further explains the problem and the solution the pattern
makes possible.

* Structure of classes shows each part of the pattern and how they are
related.

* Code example in one of the popular programming languages makes it
easier to grasp the idea behind the pattern.

%*i‘fr,? The Edward S. Rogers Sr. Department

=] of Electrical & Computer Engineering

%;@ UNIVERSITY OF TORONTO

Classification of patterns

* Creational patterns provide object creation mechanisms that

increase flexibility and reuse of existing code.

 Structural patterns explain how to assemble objects and classes into

larger structures, while keeping the structures flexible and efficient.

* Behavioral patterns take care of effective communication and the

assignment of responsibilities between objects.

%*i‘fr,? The Edward S. Rogers Sr. Department

=] of Electrical & Computer Engineering

%;@ UNIVERSITY OF TORONTO

Classification of patterns

* Creational patterns
e Singleton

* Factory Method

e Structural patterns

 Composite

* Behavioral patterns

* Strategy

af_-i The Edward S. Rogers Sr. D}
‘ofEl cal & Cor 1. r Eng

um

HU
qg,"? 19) VERSITY OF TORONTO

Singleton

Singleton

* Intent:
* Ensure that a class has just a single instance
* Provide a global access point to that instance

SORRY, I THOUGHT
THIS ROOM WASN'T
0CCUPIED.

Clients may not even realize that
they’re working with the same
object all the time.

Singleton

* acreational design pattern that lets you ensure that a
class has only one instance, while providing a global
access point to this instance.

* Example:
e cache
* thread pools
* registries

Singleton

* How?
* Make the default constructor private, to prevent other objects from using
the new operator with the Singleton class.

* Create a static creation method that acts as a constructor. Under the hood,
this method calls the private constructor to create an object and savesitin a
static field. All following calls to this method return the cached object.

& The Edward S. Rog SD}
Bl of Electr 1&@} r Eng

IlU
% UNIVERSITY e TORONTO

Singleton

Client

* The Singleton class declares the static
method getinstance that returns the
same instance of its own class.

* The Singleton’s constructor should be
hidden from the client code. Calling
the getinstance method should be the
only way of getting the Singleton
object.

Singleton P

I

- instance: Singleton

-

- Singleton()
+ getinstance(): Singleton

if (instance == null) {

// Note: if you're creating an app with
'/ multithreading support, you should
// place a thread lock here.

instance = new Singleton()

}

return instance

Singleton Implementation (Python

class SingletonMeta(type):
The Singleton class can be implemented in different ways in Python. Some
possible methods include: base class, decorator, metaclass. We will use the
metaclass because it is best suited for this purpose.

J 1] q ",
_instances = {} if __name__ == "__main__":

The client code.

def __call__(cls, *xargs, skxkwargs):
mman 51

s2

Singleton()

Possible changes to the value of the '__init__ " argument do not affect Singleton()

the returned instance.

if id(sl1l) == id(s2):
print("Singleton works, both variables contain the same instance.")

if cls not in cls._instances:
else:

instance = super().__call__(xargs, *xkwargs) , , _ , . . .
print("Singleton failed, variables contain different instances.")

cls._instances[cls] = instance
return cls._instances[cls]

class Singleton(metaclass=SingletonMeta):
def some_business_logic(self):
Finally, any singleton should define some business logic, which can be
executed on its instance.

Singleton - Example

e java.lang.Runtime

Every Java application has a single instance of class Runtime that allows
the application to interface with the environment in which the
application is running. The current runtime can be obtained from the
getRuntime method.

* java.awt.Desktopi#getDesktop()

» java.lang.System#tgetSecurityManager()

’fﬁé The Edward S. Rogers Sr. Department

@ | of Electrical & Computer Engineering

%Z?:a UNIVERSITY OF TORONTO

http://java.sun.com/javase/6/docs/api/java/lang/Runtime.html
http://docs.oracle.com/javase/8/docs/api/java/awt/Desktop.html
http://docs.oracle.com/javase/8/docs/api/java/lang/System.html

Singleton - Applicability

* Use the Singleton pattern when a class in your program
should have just a single instance available to all clients; for
example, a single database object shared by different parts
of the program.

* Use the Singleton pattern when you need stricter control
over global variables.

%*i‘fr,? The Edward S. Rogers Sr. Department

=] of Electrical & Computer Engineering

%;@ UNIVERSITY OF TORONTO

Singleton: Pros and Cons

v/ You can be sure that a class has only a
single instance.

v You gain a global access point to that
instance.

v/ The singleton object is initialized only
when it’s requested for the first time.

X Violates the Single Responsibility

Principle. The pattern solves two
problems at the time.

The Singleton pattern can mask bad
design, for instance, when the
components of the program know too
much about each other.

The pattern requires special treatment in
a multithreaded environment so that
multiple threads won't create a singleton
object several times.

It may be difficult to unit test the client
code of the Singleton because many test
frameworks rely on inheritance when
producing mock objects. Since the
constructor of the singleton class is
private and overriding static methods is
impossible in most languages, you will
need to think of a creative way to mock
the singleton. Or just don’t write the
tests. Or don’t use the Singleton pattern.

Classification of patterns

* Creational patterns
e Singleton

* Factory Method

e Structural patterns

 Composite

* Behavioral patterns

* Strategy

af_-i The Edward S. Rogers Sr. D}
‘ofEl cal & Cor 1. r Eng

um

HU
qg,"? 19) VERSITY OF TORONTO

Factory Method

he Edward S. Rogers Sr. Department
Electrical & Computer Engineering

‘?M‘g‘ UNIVERSITY OF TORONTO

Factory Method

* Factory Method is a creational design pattern that provides an
interface for creating objects in a superclass, but allows subclasses to

alter the type of objects that will be created.

— — Gl =7
‘ = (] 7
\
H
SeWs s e =\
s F
/ >
\ (€ LOGISTICS]| b/

LOGISTICS O00on
00000000000 0000a4d

o~ ROAD ggg[}ggf SEA
0| [LoaisTics
0

-‘i‘i}i The Edward S. Rogers Sr. Department
] | ectrical & Computer Engineering

5‘% UNIVERSITY OF TORONTO

Factory Method

Creator Products

Logistics
«interface»
I Transport
+ planDelivery() Transport t = createTransport() = = — - + deliver()
+ createlransport() A
5 o B
H H
I I Truck Ship
RoadLogistics Sealogistics -
- — —
, Deliver by land Deliver by sea
—Z S \ ‘) in a box. + deliver() + deliver() in a container.
return new Truck() + createTransport() | |+ createTransport() [- | return new Ship()

The Edward S. Rogers Sr. Department
of Electrical & Computer Engineering

;‘;’%ﬁ UNIVERSITY OF TORONTO

Factory Method

The Creator class declares the
factory method that returns new
product objects. It's important
that the return type of this
method matches the product
interface.

Product p = createProduct()
p.doStuff()

The Product declares
the interface

Creator
«interface»
_____________________ Product
+ someOperation() >
+ createProduct(): Product + doStuff()
o o i

ConcreteCreatorA ConcreteCreatorB Concrete Concrete
ProductA ProductB

+ createProduct(): Product

+ createProduct(): Product

return new ConcreteProductA()

Concrete Creators override the base factory method

so it returns a different type of product.
Note that the factory method doesn’t have
to create new instances all the time. It can also

return existing objects from a cache, an object pool,

or another source.

Concrete Products are
different implementations of
the product interface.

Factory Method - Example

Button okButton = createButton()
okButton.onClick(closeDialog)

okButton.render()

Dialog

+ render()
+ createButton(): Button

A

«interface»
Button

+ render()
+ onClick()

WindowsDialog

WebDialog Windows
Button

+ createButton(): Button

+ createButton(): Button

return new WindowsButton()

Factory Method - Applicability

* when you don’t know beforehand the exact types and dependencies
of the objects your code should work with.

* when you want to provide users of your library or framework with a
way to extend its internal components.

* when you want to save system resources by reusing existing objects
instead of rebuilding them each time.

Factory Method — Pros and Cons

v/ You avoid tight coupling between the X The code may become more complicated
creator and the concrete products. since you need to introduce a lot of new

v/ Single Responsibility Principle. You can subclasses to implement the pattern. The

; - a nario is when you’r
move the product creation code into one best case scenario is when you'e

place in the program, making the code introducing the pattern into an existing

easier to support. hierarchy of creator classes.

v/ Open/Closed Principle. You can introduce
new types of products into the program
without breaking existing client code.

Abstract Factory

* Many designs start by using Factory Method (less complicated and

more customizable via subclasses) and evolve toward Abstract Factory

(more flexible, but more complicated).

Coffee
Chair Sofa Table

Victorian

Modern ig @

LISTEN, T ORDERED SOME
CHAIRS LAST WEEK, BUT I
GUESS T NEED A SOFA T00...

HMM...
SOMETHING
DOES NOT

LOOK RIGHT.

https://refactoring.guru/design-patterns/factory-method
https://refactoring.guru/design-patterns/abstract-factory

Abstract Factory

* Many designs start by using Factory Method (less complicated and
more customizable via subclasses) and evolve toward Abstract Factory
(more flexible, but more complicated).

«interface»
FurnitureFactory

+ createChair(): Chair
+ createCoffeeTable(): CoffeeTable
+ createSofa(): Sofa

VictorianFurnitureFactory ModernFurnitureFactory Q
/4 —
s 2
+ createChair(): Chair + createChair(): Chair e e
+ createCoffeeTable(): CoffeeTable + createCoffeeTable(): CoffeeTable 7 <)
+ createSofa(): Sofa + createSofa(): Sofa -> -l‘z-a D

https://refactoring.guru/design-patterns/factory-method
https://refactoring.guru/design-patterns/abstract-factory

Classification of patterns

* Creational patterns
e Singleton

* Factory Method

e Structural patterns

 Composite

* Behavioral patterns

* Strategy

af_-i The Edward S. Rogers Sr. D}
‘ofEl cal & Cor 1. r Eng

um

HU
qg,"? 19) VERSITY OF TORONTO

&

N/ UNIVERSITY OF TORONTO

e}
=
3]
g
=}
=
a

gineering

&

Composite Pattern

he Edward S. Rogers Sr. Dep,
of Electrical & Computer En,

Composite Pattern

* Intent

Composite is a structural design pattern that lets you compose objects
into tree structures and then work with these structures as if they were

individual objects.
* Problem

Using the Composite pattern makes sense only when the core model of
your app can be represented as a tree.

5 ctrica g
%?f UNIVERSITY OF TORONTO

Composite Pattern

Complex /0\ ¢ 2 types of ObjeCtS

2
order @E’V * Products
* Boxes

\
@@

Receipt

Phone Headphones Charger

"iﬁré The Edward S. Rogers Sr. Department

=] of Electrical & Computer Engineering

5‘% UNIVERSITY OF TORONTO

Composite Pattern

e Solution

Work with Products and Boxes through a common interface which
declares a method for calculating the total price. (Recursively)

HOLD ON,
/ PLEASE,.

WHAT'S
YOUR
PRICE?

HEY, WHAT'S
YOUR PRICE?

Composite Example

Book Book
* Boo
Chapter
DocumentComponent - Section
a Paragraph
Paragraph
Paragraph Composite |- Section
T Paragraph
Chapter

Chapter Book Section Section

The Edward S. Rog SD}
‘ofElect cal & Cor } t Eng

IIU
% UNTYERSITY G TORONTO

Composite Design Pattern - Structure

The Component interface
describes operations that are
common to both simple and

complex elements of the
tree.

The Leaf is a basic element
of a tree that doesn’t have
sub-elements.

Edward S. Rogers Sr. Department
| of Electrical & Computer Engineering

%;@ UNIVERSITY OF TORONTO

N\

Client

|, Client works with all elements through the component

i

interface. As a result, the client can work in the same way
with both simple or complex elements of the tree.

«interface»

Component
+ execute()
A The Composite/container is an
T element that has sub-elements:
Leaf Composite leaves or other containers. A
container doesn’t know the concrete
" children: Component]] classes of its children. It works with all
+ execute() + add(c: Component) sub-elements only via the component
+ remove(c: Component) interface
Do some work. + getChildren(): Component[]
+ execute()

Delegate all work to
child components.

Implementation

1. Make sure that the core model of your app can be represented as a tree structure. Try
to break it down into simple elements and containers. Remember that containers

must be able to contain both simple elements and other containers.

2. Declare the component interface with a list of methods that make sense for both
simple and complex components.

3. Create a leaf class to represent simple elements. A program may have multiple
different leaf classes.

4. Create a container class to represent complex elements. In this class, provide an array
field for storing references to sub-elements. The array must be able to store both
leaves and containers, so make sure it’s declared with the component interface type.

5. While implementing the methods of the component interface, remember that a
container is supposed to be delegating most of the work to sub-elements.

6. Finally, define the methods for adding and removal of child elements in the container.

[
(-
]

g2l of Electrical & Computer Engineering
% UNIVERSITY OF TORONTO

Usage of the pattern in Python

* Usage examples: The Composite pattern is pretty common in Python
code. It’s often used to represent hierarchies of user interface
components or the code that works with graphs.

* Identification: If you have an object tree, and each object of a tree is
a part of the same class hierarchy, this is most likely a composite. If
methods of these classes delegate the work to child objects of the
tree and do it via the base class/interface of the hierarchy, this is
definitely a composite.

%*i':ff The Edward S. Rogers Sr. Department

=] of Electrical & Computer Engineering

.;;?:gz UNIVERSITY OF TORONTO

Real work application - Eclipse workspace, SWT

* [Workspace is the root interface and it is a Composite of IContainers

and IFiles.
IR
esource . Composite:Component —
getParent() < & Package Explorer o= O
A e =
I 4 1= Project
4 = Folder
IFile IContainer = .
members() |:| File fxt
getContents() getFile()
GetContents() getFolder()
A
Composite:Leaf ‘ o o | r
l | |
IFolder IProject IWorkspaceRoot <— IWorkspace

build() getProjects()

getNature()

Composite Pattern vs SOLID

e Which classes declare add and remove
children operation?

* Trade-off between safety and transparency

 Component: transparency, because you can treat
all components uniformly. It costs you safety,
however, because clients may try to do
meaningless things like add and remove objects
from leaves.

 Composite: safety, because any attempt to add
or remove objects from leaves will be caught at
compile-time in a statically typed language. But
you lose transparency, because leaves and
composites have different interfaces.

Client

i

«interface»
Component

+ execute()

Composite

- children: Component(]

+ execute()

Do some work.

+ add(c: Component)
+ remove(c: Component)
+ getChildren(): Component(]

+ execute()

Delegate all work to
child components.

Composite — Pros & Cons

v/ You can work with complex tree X It might be difficult to provide a common
structures more conveniently: use interface for classes whose functionality
polymorphism and recursion to your differs too much. In certain scenarios,
advantage. you'd need to overgeneralize the

v Open/Closed Principle.You can introduce component interface, making it harder to

new element types into the app without
breaking the existing code, which now
works with the object tree.

comprehend.

"i‘i{'é The Edward S. Rogers Sr. Deparrment
& | lectrical & Computer Engineering

%}% UNIVERSITY OF TORONTO

